About The Hong Kong
Laureate Forum

The Hong Kong Laureate Forum aspires to be a world-class academic exchange event to connect the current and next generations of leaders in scientific pursuit, and to promote understanding and interests of the young generation in Hong Kong and around the world in various disciplines in science and technology.

> Learn more

Inaugural Forum

 

The inaugural Hong Kong Laureate Forum took place on 13-18 November 2023. Shaw Laureates and distinguished scientists spent a week in Hong Kong interacting with almost 200 young scientists and Forum Ambassadors from around the world, sharing their views, experience and aspirations in various scientific fields. The week of programme consisted of world-class intellectual seminars, discussion groups, poster sessions and visits to the latest Hong Kong scientific development projects, universities and institutes as well as cross-cultural social activities.

> Learn more

Shaw Laureates

 
The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. 

 

> Learn More

Exploring New Horizons 2024

"Exploring New Horizons 2024" is one of the activities under "the HKLF Science Explorer Award Scheme 2023/2024 for Secondary Students", launched by the Council of the Hong Kong Laureate Forum. In this activity, senior secondary school students can visit local universities and research institutions' laboratories and engage in dialogue with local scientists and researchers, to gain a deeper understanding of scientists' work, cultivate their interest in science, and ignite their pursuit of scientific research advancement.

> Learn more

Science in the Community

The Newly Developed High-Efficiency Carbon Dioxide Electroreduction System Targets to Reduce Carbon Footprint and Progress Carbon Neutrality Goals

Background: Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers from The Hong Kong Polytechnic University have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions...

> Learn more

 

Gut Microbiota Modulation for Post-Acute COVID-19 Syndrome: Current Evidence

Post-acute COVID-19 syndrome ("long COVID") refers to long-term symptoms that persist after acute SARS-CoV-2 infection, affecting multiple organs and systems. Long COVID affects over 65 million people worldwide, yet effective treatment is limited. Our research team at the Faculty of Medicine of the Chinese University of Hong Kong (CUHK Medicine) has completed a large-scale double-blind, randomised, placebo-controlled clinical trial, which confirmed that patients who were given an oral synbiotic preparation (SIM01) developed by CUHK experienced significant alleviation in various long COVID symptoms...

> Learn more

 

Alpacas and Nanobodies

When we think of alpacas, the first things that pop up in our minds may be holiday farms or alpaca fleece. However, if you ask a biomedical scientist, they may have thought of nanobody, fragment of a special type of antibody...

> Learn more

The Shaw Prize in Astronomy 2018 was awarded to Prof Jean-Loup Puget for his contributions to astronomy in the infrared to submillimetre spectral range. He detected the cosmic far-infrared background from past star-forming galaxies, and proposed aromatic hydrocarbon molecules as a constituent of interstellar matter. With the Planck space mission, he has dramatically advanced our knowledge of cosmology in the presence of interstellar matter foregrounds.

An interview with Prof Jean-Loup Puget (Prof Puget) was conducted by the Theoretical Astronomy Group of the Hong Kong Astronomical Society (HKAS) in September 2018 and it was published at HKAS’s newsletter on 4th issue in 2018. We are delighted to share the interview highlights provided by the HKAS.

(HKAS) How can you manage to keep focusing your effort in your infrared research for more than four decades?

(Prof Puget) In 1971 whilst I was doing my Master thesis, I looked for internship. Having attended a seminar on the subject, I was keen to work in cosmology. I then went to CERN and worked on the annihilation cross section of proton and anti-proton. We tested using gamma ray satellite for destructive annihilating radiation, but no obvious evidence of excess of matter over anti-matter in the universe which would affect the size of clusters of galaxies was observed. There was, however, strong plasma distortion compared to Planck’s function, which was not even seen in balloon experiment prior to COBE (Cosmic Background Explorer). Later, I gave up cosmology and focused on gamma ray coming from the galaxies. I was interested in the cosmic background, the CMB (Cosmic Microwave Background) and other background created by galaxies. Astronomers are usually more interested in point sources but not fully diffused background which is a bit difficult to detect from the data received by telescope and instruments due to the fact that infrared and longer wavelength have strong foreground radiation pollution which is easier to detect.

(Prof Puget) I worked on all the data from satellites, like COBE, etc. The major defect of the data was from galactic dust, so to make the data accurate, we had to discard such contamination. It was easier to obtain that effect at higher frequency and then we found CIB (Cosmic Infrared Background) which is when half of the starlight radiation is absorbed by galactic dust and is reemitted as CIB. Elliptical galaxies have no star formation with gases and dusts, so they are mostly invisible in CIB. Star burst galaxies are the opposite. You can do in-depth survey on those by using the Spitzer Telescope.

(Prof Puget) You can also do an in-depth survey on 20 thousand galaxies and then calculate an average over these galaxies, which would be the CIB. There were unidentified infrared bands at 3.3, 6.2, 7.7, 8.8 microns which were out of equilibrium radiation from extremely small clays and large molecules of silicates and carbons. 50% of the carbons in the galaxies were in these forms.

(HKAS) Do most CIB come from stars?

(Prof Puget) Yes, mostly come from spiral galaxies and star burst galaxies.

(HKAS) Is the emission from aromatic compounds absorption lines?

(Prof Puget) No. They are emission lines.

(HKAS) Can you talk about the first CIB detection in 1996?

(Prof Puget) We wanted to get rid of the effect of galactic dust which mixes with gases, we had to investigate the H1 region for the gas which associated with the dust. At high latitude of the galactic plane there are very few interstellar medium. We also detected the effect of the zodiac light. We further observe something else, but it was very difficult to compute. For example, one of the cosmological parameters is ionisation parameter which is the optical depth of electrons from the formation of first galaxies to us. This may be measured from quasars. Other examples are the polarisation parameter and the estimation of dust.

(HKAS) Was it difficult to detect the northern sky CIB?

(Prof Puget) It was difficult to detect the northern sky region but the team from Netherland did a very good job later. Also, the signal was weak at the pole’s region.

(HKAS) For the Planck Satellite mission about CMB, how did you choose the 5 bands for the High Frequency Instrument in order to do the observation?

(Prof Puget) We chose the frequency not beyond the GHz based on the parameters we were interested in. We want to do the CMB which is limited by the photons noise of the CMB emission. In the end, we did not choose GHz. We are also interested the synchrotron radiation with low frequency band before the WMAP results. It was less demanding technically for high frequency instrument, like cooling down the detectors with cryogenic system to cool the bolometer from 20K in space. There were 3 active coolers plus passive cooling but the passive cooling was very critical. It finally managed to cool down the detector to 0.1K. That was quite challenging.

(HKAS) Would you expect we can detect more complicated substance such as amino acid in cosmological scale? We know that you had detected aromatic hydrocarbon molecules.

(Prof Puget) Now, we know very well how cool star is formed in space. For example, the different forms in big ice and how they are formed are well known. We understand that there is pH value at all inside the giant molecular cloud. However, for the type B star, we know at the edge there is pH value, as such we understand that life may be formed from interstellar medium or intergalactic medium.

(HKAS) Any books recommended to our society’s members?

(Prof Puget) [Professor did not recommend any books but, he did encourage our members to observe more and conduct more simulations.]

(HKAS) Prof Jim Peebles was awarded the Shaw Prize in Astronomy 2004. We knew that there were some predictions for the CIB radiation from Prof Peebles at 1960’s. Did you know your discovery on CIB related to his suggestions and predictions?

(Prof Puget) Yes, sure. I referred to his predictions and also referred to his paper. He gave me some ideas about the work on CIB.

graph picture 1

Figure 1: The Cosmic optical,infrared and microwave backgrounds compared.
(Modified from an original figure by H Dole et al. The cosmic infrared background resolved by Spitzer. Contributions of mid-infrared galaxies to the far-infrared background. A&A, 451:417429, May2006)

 

Scripts prepared by Dr Leung Chun Sing, Mr Fung Po Kei and Mr Eddie Ng